Activating E2Fs mediate transcriptional regulation of human E2F6 repressor.
نویسندگان
چکیده
E2F6 is believed to repress E2F-responsive genes and therefore serve a role in cell cycle regulation. Analysis of the human E2F6 promoter region revealed the presence of two putative E2F binding sites, both of which were found to be functionally critical because deletion or mutations of these sites abolished promoter activity. Ectopic expression of E2F1 protein was found to increase E2F6 mRNA levels and significantly upregulate E2F6 promoter activity. Deletion or mutation of the putative E2F binding sites nullified the effects of E2F1 on the E2F6 promoter activity. Studies on the temporal induction of E2F family members demonstrated that the activating E2Fs, and most notably E2F1, were upregulated before E2F6 during cell cycle progression at the G1/S phase, and this coincided with the time course of induction experienced by the E2F6 promoter during the course of the cell cycle. EMSAs indicated the specific binding of nuclear complexes to the E2F6 promoter that contained E2F1-related species whose binding was specifically competed by the consensus E2F binding site. Chromatin immunoprecipitation assays with anti-E2Fs demonstrated the association of E2F family members with the E2F6 promoter in vivo. These data indicate that the expression of the E2F6 repressor is influenced at the transcriptional level by E2F family members and suggest that interplay among these transcriptional regulators, especially E2F1, may be critical for cell cycle regulation.
منابع مشابه
E2F6 Associates with BRG1 in Transcriptional Regulation
The E2F6 protein functions as an Rb-independent repressor of gene transcription. We have previously provided evidence suggesting a role for E2F6 in repression of E2F-responsive genes at S phase. Here, we have identified BRG1, the ATPase subunit of the SWI/SNF chromatin-remodeling complex, as an E2F6 interacting protein. Immunoprecipitation experiments demonstrate that BRG1 binds specifically to...
متن کاملA Role for E2F6 in the Restriction of Male-Germ-Cell-Specific Gene Expression
E2F transcription factors play a pivotal role in the regulation of cellular proliferation and can be subdivided into activating and repressing family members [1]. Like other E2Fs, E2F6 binds to E2F consensus sites, but in contrast to E2F1-5, it lacks an Rb binding domain and functions as an Rb-independent transcriptional repressor [2, 3, 4 and 5]. Instead, E2F6 has been shown to complex with Po...
متن کاملThe E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex.
The E2F transcription factors play a key role in the regulation of cellular proliferation and terminal differentiation. E2F6 is the most recently identified and the least well understood member of the E2F family. It is only distantly related to the other E2Fs and lacks the sequences responsible for both transactivation and binding to the retinoblastoma protein. Consistent with this finding, E2F...
متن کاملChk1 Inhibits E2F6 Repressor Function in Response to Replication Stress to Maintain Cell-Cycle Transcription
BACKGROUND In eukaryotic cells, detection of replication stress results in the activation of the DNA replication checkpoint, a signaling cascade whose central players are the kinases ATR and Chk1. The checkpoint response prevents the accumulation of DNA damage and ensures cell viability by delaying progression into mitosis. However, the role and mechanism of the replication checkpoint transcrip...
متن کاملE2F6 inhibits cobalt chloride-mimetic hypoxia-induced apoptosis through E2F1.
E2F6, a potent transcriptional repressor, plays important roles in cell cycle regulation. However, roles of E2F6 in hypoxia-induced apoptosis are unknown. Here, we demonstrated biological functions of E2F6 in hypoxia-induced apoptosis and regulatory pathways. During hypoxia (CoCl(2), 800 microM)-induced human embryonic kidney 293 cell apoptosis, E2F6 expression was down-regulated with concurren...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 290 1 شماره
صفحات -
تاریخ انتشار 2006